

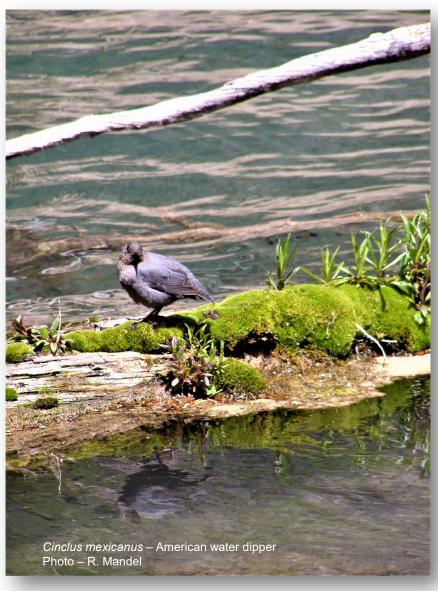
Assessment of Biodiversity and Ecological Uplift Potential to Leverage Natural Capital

Randy Mandel, Principal Ecologist, Montrose Galen Peracca Senior Associate, Montrose Rebecca San Fratello, Senior Scientist, Montrose Jingyi Gu, Project Engineer, Montrose Michael Curran, Principal Ecologist, Abnova Environmental

Content

1 Vision and Background

- 2 The Importance of Biodiversity & Carbon Sequestration
- 3 Assessment Methodology
- 4 Comparative Assessment Methodology & Calculation of Uplift Potential
- 5 Project Example


Our Vision for Ecosystem Valuation

Natural capital valuation places a monetary value on economic services provided by a given ecosystem

We take an economic view of ecosystem valuation and biodiversity using an "ecosystem-based approach" to address challenges

Six key elements of a successful ecosystem-based approach:

- 1. Consideration of geographic areas defined by ecological boundaries
- 2. Recognition of complexities of natural processes and social systems
- 3. Explicit definition of biological, economic, and social goals
- 4. Emphasis on science-based and informed decision-making to achieve specific goals
- 5. Comparison to similar ecological reference area(s)
- 6. Recognition that nature is unpredictable and adaptive management is necessary to adjust strategy over time

Our Vision for Realizing Ecological Benefits

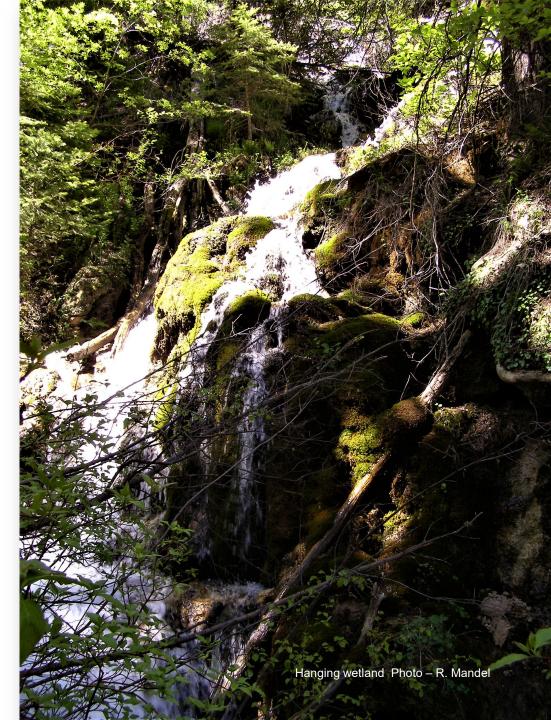
Realizing ecological benefits requires two-step strategy:

- 1. Understanding **current balance sheet** of a property ecological and human use assets and management expenses
- 2. Using balance sheet to **identify investments and actions** that maximize asset values while optimizing management expenses

Which benefit(s) to focus on depends on client's specific vision, goals, and objectives for a property

Ecological Benefits of Well-Managed Natural Areas

Carbon sequestration Conservation/Enhancement of biodiversity Contribution to climate regulation Control of invasive species Ecosystem protection Maintenance of harvestable resources Nutrient cycling Prevention of soil erosion Provision of clean water Provision of clean air Preservation of medicinal and genetic resources Recreation Soil regeneration Watershed protection


Content

- 1 Vision and Background
- 2 The Importance of Biodiversity & Carbon Sequestration
- 3 Assessment Methodology
- 4 Comparative Assessment Methodology & Calculation of Uplift Potential
- 5 Project Example

Definition of Biodiversity

- The **variety of life on earth** at all levels, from genes to ecosystems
 - Encompasses the evolutionary, ecological, and cultural processes that sustain life
 - Considers interactions between species and their environment
- Represents living genetic history of our planet
 - Our survival as organisms and as a living planet is dependent upon depth, diversity, and resiliency of our gene pool
- Increased biodiversity allows an ecosystem to more effectively resist climate change and more successfully provide ecosystem services

Why is Biodiversity Important?

Human Health

- Natural Medicine & Pharmacology
 Mental & Physical Wellness
 Education & Spirituality
 Open Space
 Rejuvenation / Relaxation
- Sustainable Food Provision

Economic Health

Job Creation & Sustainability

 Circular Economies
 Natural Capital

 Sustainable Provision of Raw Materials

 Resilient Societies & Communities
 Recreation & Tourism

The What and Why of Carbon Sequestration

- The process of **capturing and storing atmospheric carbon**
 - Essential for offsetting carbon emissions that contribute to greenhouse gasses (GHG)
 - Stabilizes carbon to prevent it from entering Earth's atmosphere
- 3 Main Types
 - **1.** Biological naturally occurring process of storing carbon in vegetation
 - 2. Geological carbon stored in underground geologic formations or rocks
 - 3. Technological carbon capture through anthropogenic processes
- Natural carbon sinks are reduced by habitat loss, while global carbon emissions continue to increase
- Habitat enhancement requires consideration of many factors in selection process
 - Real-estate cost and tenure agreements
 - Existing ecosystem function
 - Habitat health and viability
 - Natural hazard vulnerability
 - Community support

Content

- 1 Vision and Background
- 2 The Importance of Biodiversity & Carbon Sequestration
- **3** Assessment Methodology
- 4 Comparative Assessment Methodology & Calculation of Uplift Potential
- 5 Project Example

Biodiversity: Three Levels of Assessment

On-Site Assessment

On-Site & Remote Assessment On-Site, Remote Assessment & Al

Site orthomosaic drone image

Image based on LiDAR and on-site monitoring

Habitat evaluations

Typical Approach to Biodiversity On-Site Assessment

On-Site & Reference Community Data Review

On-site and publicly available data reviewed to determine:

- Site history
- Reference conditions
- Climax/steady state communities
- T&E survey
- Wetland conditions
- Reference communities identified to determine the defining attributes for different habitat and community

On-Site Surveys

Verify current conditions such as:

• Habitat type

- Site stressors (erosion, noxious species, etc.)
- Canopy cover & height
- Hydrology
- Species richness, distribution, and dominance
- Wetland delineation
- Soil type
- Sediment transport and other variables

Comparative Analysis

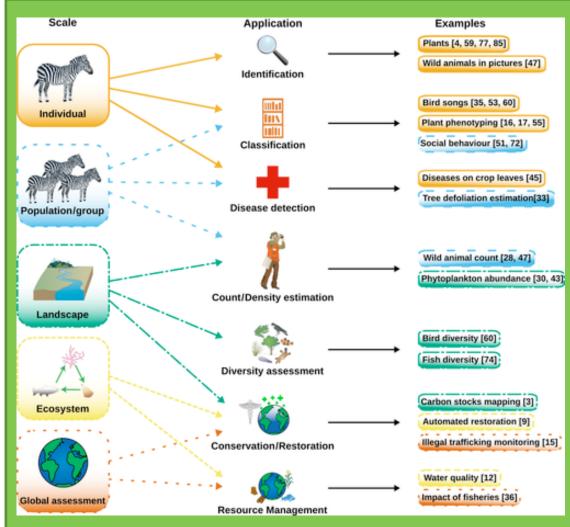
On-site and reference conditions compared to determine biodiversity status and trajectory

Biodiversity "Scorecard"

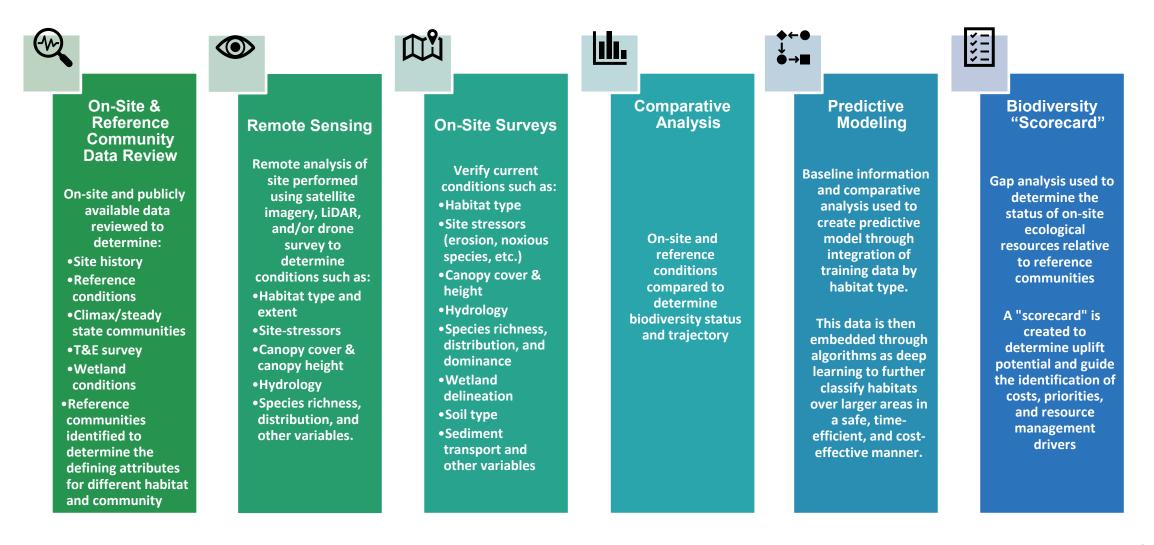
Gap analysis used to determine the status of on-site ecological resources relative to reference communities

A "scorecard" is created to determine uplift potential and guide the identification of costs, priorities, and resource management drivers

Incorporating Remote Sensing in Biodiversity Assessment


- Provides a data-rich visualization component to biodiversity assessment
- Remote sensing tools
 - Satellite imagery
 - Radar
 - IR & NIR
 - Lidar
 - Drones
 - Algorithms for Optimization
- Expanded data quality, availability, spatial and temporal resolution as well as technologies to utilize remote sensing data

Turner, 2014. Sensing Biodiversity. Science. 346(6207:301-302. DOI: 10.1126/science.1256014


Using Deep Learning to Inform Biodiversity Assessment

- Monitoring information + predictive modeling → patterns in large and heterogeneous datasets
- Reference community data + comparative analysis → models that classify habitat conditions and predict changes across time and space
- Works over large land areas in safe, timeefficient, and cost-effective manner
- Elucidates relationships between climate change, species adaptation/biodiversity, and resiliency

Christin et al. 2019. Applications for Deep Learning in Ecology. Methods in Ecology and Evolution. 10(10):1632-1644. DOI: 10.1111/2041-210X.13256.

Our Expanded Approach to Biodiversity Assessment

Carbon Assessment

- Sequestration traditionally measured in terms of above ground carbon, normally through standing woody biomass
- Our team is leveraging the combined above, below ground, and blue carbon sequestered in given site, therefore providing a more accurate assessment and understanding
- Our methodology for estimation includes the combination of:
 - Ecosystem biomass calculations
 - Met-towers with above and below ground probes to measure gas exchange
 - Calculations of carbon sequestration potential
 - Sequestration potential based on habitat type and condition
 - Application of advanced algorithms and informatics

Content

- 1 Vision and Background
- 2 The Importance of Biodiversity & Carbon Sequestration
- 3 Assessment Methodology
- 4 Comparative Assessment Methodology & Calculation of Uplift Potential
- 5 Project Example

Using LiDAR for Habitat Identification and Vegetation Analysis

- LiDAR detects above-ground biomass and vegetative attributes such as canopy height and diameter, species richness and distribution, undergrowth characteristics, and noxious species invasion
- Provides detailed bare-earth topography normally obscured by vegetation and difficult to measure using aerial photogrammetry
- Through comparison with reference area information, can determine health, trajectory, stressors, etc. by habitat type to form predictive modeling that can be coupled with natural capital analysis to inform land management decisions

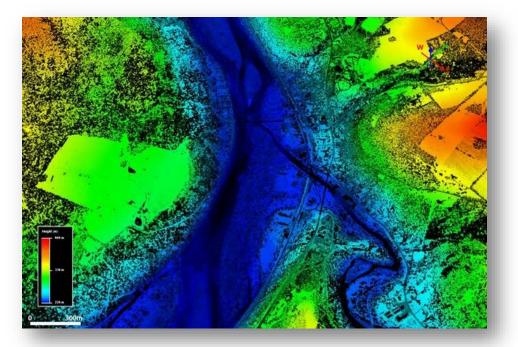


Image from USGS. https://www.usgs.gov/centers/eesc/science/mapping-riverine-habitats-delaware-river-using-bathymetric-lidar

Geographic Information Systems (GIS)

- GIS provides geospatial view of biophysical and habitat data through time and over land area. It provides physical assessment and overall trajectory for ecological systems
- GIS commonly used to create maps to understand biodiversity in a given area at different spatial scales
- Geoinformatics helps assess spatial biodiversity for conservation assessment and planning. Coupled with advanced remote sensors and deep learning tools, GIS enables better understanding of ecological systems for decision making

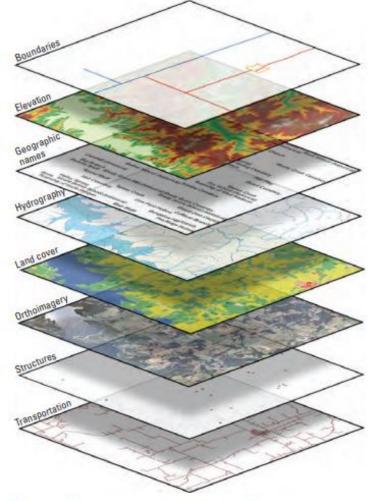
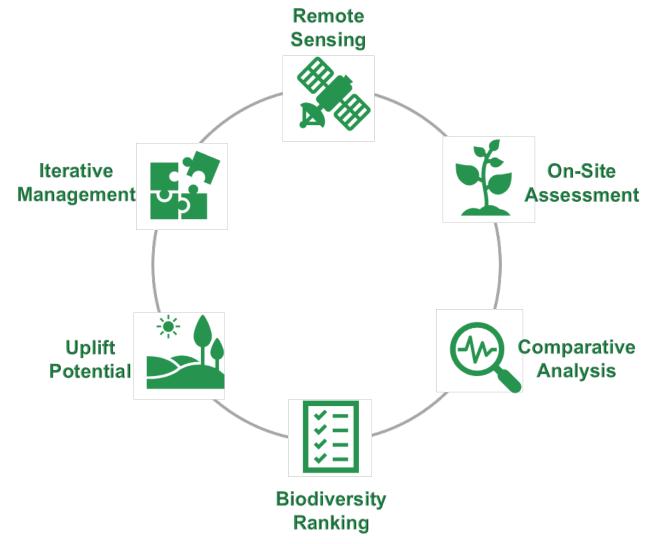


Figure 1. Eight base layers of The National Map.

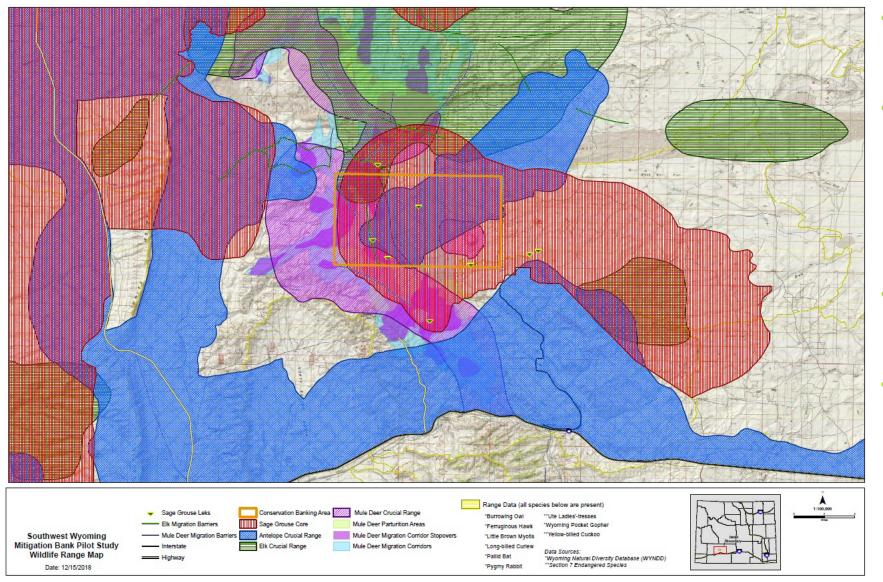
Image from USGS (https://www.usgs.gov/media/images/8-base-layers-national-map)


Comparative Assessment Methodology

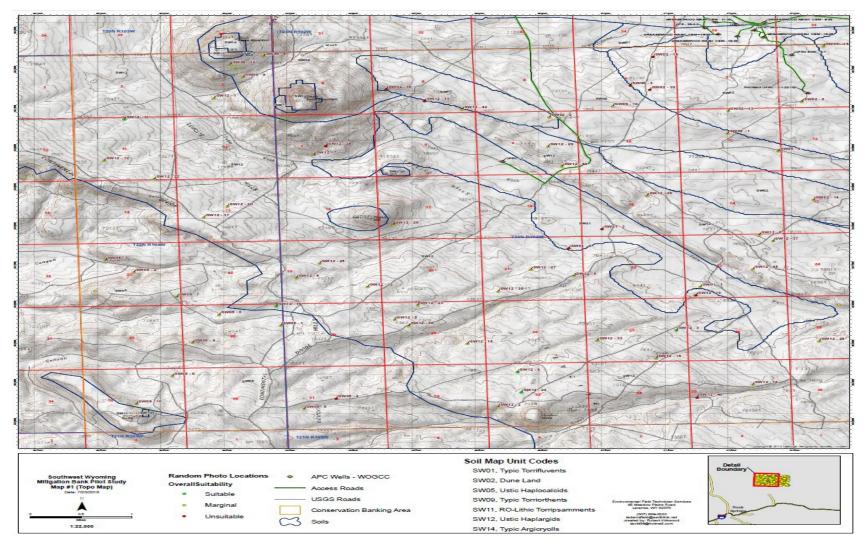
- Combination of on-the-ground assessment coupled with remote assessment ensures the most accurate understanding of environments and uplift potential
- Habitats are compared with **adjacent reference areas** comprised of similar community types
- Habitat assessment is based on:
 - Type (distinguished by hydrology, soils, climate, and expected vegetative)
 - Extent (e.g., area)
 - Distinctiveness (e.g., uniqueness)
 - Condition (relative to reference site)
 - Stressors
 - Uplift Potential
- Assessment results in a **habitat score** to note current condition and track change over time

Calculating Ecological Uplift Potential

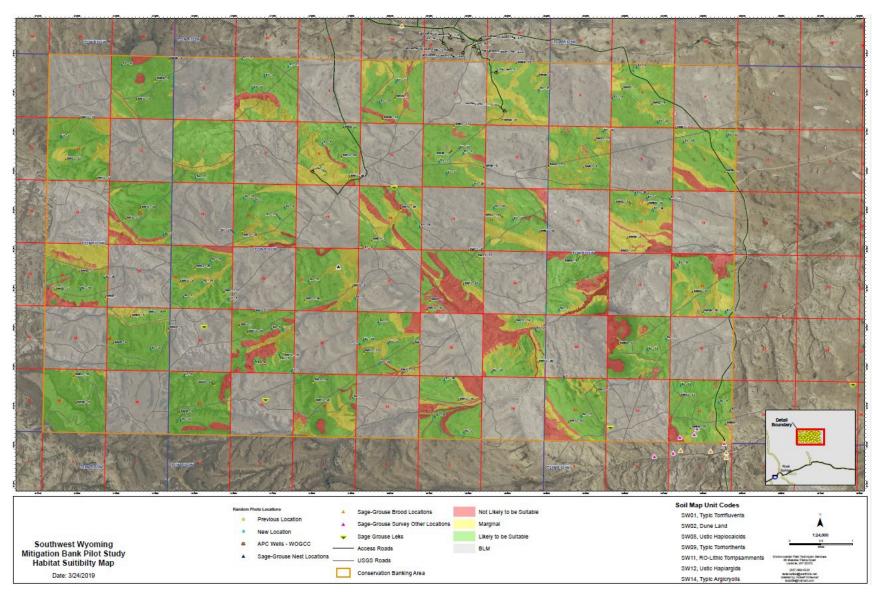
- **Uplift Potential:** weighted product of area, distinctiveness, score, condition, strategic significance, stressors, and other factors
- Reproducible methodology enables tracking of habitat change over time
- Accounts for both gains and losses:
 - Gains implement adaptive management, achieve uplift
 - Losses development removes habitat or through degradation
- Remote/on-site monitoring tracks trajectory over time
- Combine with Environmental Economics assessment, including outlay, return, and natural capital considerations


Content

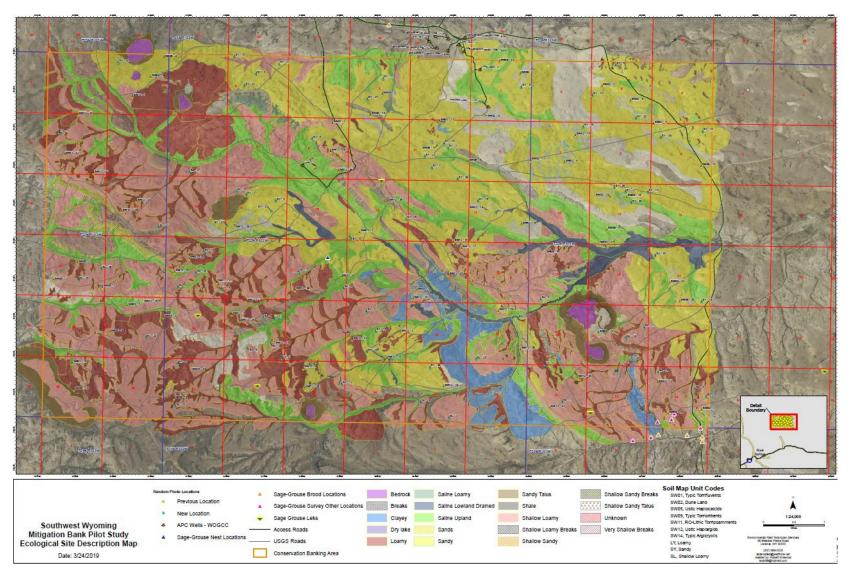
- 1 Vision and Background
- 2 The Importance of Biodiversity & Carbon Sequestration
- 3 Assessment Methodology
- 4 Comparative Assessment Methodology & Calculation of Uplift Potential
- 5 **Project Example**



Example – Wyoming Land Assessment



- **Step1:** review of existing site data (pilot studies, LiDAR, photologs, past monitoring, etc.)
- Step 2: review of desktop resources (National Wetlands Inventories, NRCS Technical Guides, Soil Maps, Ecological Site Descriptions; USFWS, USACE, NGO, and State Agency Data; etc.)
- **Step 3:** Determination of habitat type, coverage, and distribution for site analysis
- **Step 4:** Identification of habitat and distribution for spp. of concern essential for habitat analysis



- Habitat and spp. data used for development of prioritization matrix to inform remote and on-site monitoring
- Prioritization matrix superimposed upon site maps to determine sampling locations
- Sampling locations determined through
 Balanced
 Acceptance
 Sampling (BAS)
 design
- BAS locations used to determine ecological typology and accessibility to remove impractical locations

- Use of site selection important for example because of occurrence within WY "Checkerboard Lands"
- Ensures that sampling sites are spread across study area; allows for collection of estimates in efficient manner
- Allows for removal of lands outside of study area without impacting statistical robustness

- Finalized site locations superimposed with critical spp. habitat, typology, land ownership, and accessibility. Yields detailed map refinable through integration of additional information (e.g., soil type)
- Combined attributes can be prioritized into schema reflecting management decisions (e.g., regulatory criteria and/or corrective actions)
- Developed prior to initial monitoring, then refined through further data/ management input

Extreme Risk

Intense management necessary.

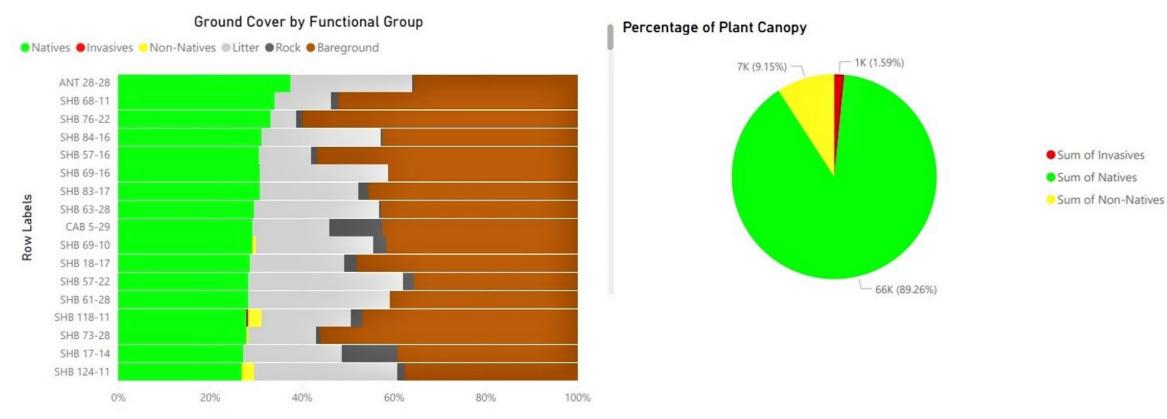
High Risk

Multiple issues Action likely needed.

Intermediate Risk

Action may be necessary based on professional judgement.

Low Risk No major action needed.


No/Very Low Risk No action needed.

- Remote and on-the-ground monitoring data are assembled into a matrix and weighted by priority and attribute
- Data is summed by habitat type to yield a **weighted score**
- Weighted score then assembled into "stoplight" dashboard to show risk and inform management
- Allows for time- and cost-efficient summary to show what areas and actions will have greatest impact
- Indicates which sites should be deprioritized because they're unlikely to benefit from remedial action
- **Systematic and repeatable** process. Resulting scores based on science, are transparent, and statistically robust
- Allows for informed decision-making guided by current conditions and overall trajectory

Summary of 2022 Site Scores		Cottonwood Creek Bentonite	Crows Nest NW #20	Dave Johnston	Day Loma Overall	Day Loma 2012	Day Loma 2014	Deep Creek North #35 & South #26
Ranking Factor	Category	Wt. Score	Wt. Score	Wt. Score	Wt. Score	Wt. Score	Wt. Score	Wt. Score
Land Surface Reclamation for young sites (0-2 years) (5x weight)	Erosion Features	15	5	0	0	0	0	5
	Undesirable Species	10	5	0	0	0	0	5
	Desirable species establishment	10	5	0	0	0	0	5
Land Surface Reclamation for sites 2+ years (5x weight)	Erosion Features	0	0	10	15	10	15	0
	Undesirable Species	0	0	10	15	15	15	0
	Desirable Species Establishment	0	0	10	15	15	15	0
Ecological Setting (3x Weight)	Reference Community	9	6	9	9	9	9	9
	Proximity to lek	9	6	9	9	9	9	9
Time since last monitoring (3x weight)	Time since last monitored	9	9	3	3	3	3	9
Site Ownership (3x Weight)	Ownership	3	6	9	6	6	6	3
Size of Site (1x Weight)	Reclamation Area	2	2	3	3	3	3	2
Priority	Assessment							
Weighted Score (Sum) = Weighted Score (Average) =								
		67.0	44.0	63.0	75.0	70.0	75.0	47.0
		8.4	5.5	7.9	9.4	8.8	9.4	5.9

- Dashboard data can be re-assembled into a **priority chart** by property or other criteria
- Clarity, transparency, and defensibility of process and dashboard allows accelerated management response times and concise reports, allowing for time and budget efficiencies

